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ABSTRACT 

Handling bioterror events that involve contagious agents is a major 

concern in the war against terror, and is a cause for debate among 

policymakers about the best response policy. At the core of this debate 

stands the question which of the two post-event policies to adopt: mass 

vaccination—where maximum vaccination capacity is utilized to 

uniformly inoculate the entire population, or trace (also called ring or 

targeted ) vaccination—where mass vaccination capabilities are traded off 

with tracing capabilities to selectively inoculate only contacts  

(or suspected contacts) of infective individuals. We present a dynamic 

epidemic-intervention model that expands previous models by capturing 

some additional key features of the situation and by generalizing some 

assumptions regarding the probability distributions of inter-temporal 

parameters. The model comprises a set of difference equations. The model 

is implemented to analyze alternative response policies. It is shown that a 

mixture of mass and trace vaccination policies—the prioritized 

vaccination policy—is more effective than either of the two 

aforementioned policies. 
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1. Introduction 

Responding to a bioterror event that involves contagious agents has become a major 

issue in the war against terror. There are many operational and logistic decisions that 

must be made carefully in order to effectively cope with such a threat. These decisions 

are roughly divided into two levels: Structural (strategic) decisions that need to be made 

in advance, and operational (real-time) decisions that must be made during the event. 

Some of the structural (strategic) problems are: 

• How many vaccines to produce and stock? 

• Which supply management policies to apply for allocating, deploying, and 

controlling inventories of vaccines and other related supplies? 

• What infrastructure (vaccination stations, quarantining facilities, etc.) is required? 

• What vaccination procedure (e.g., inoculation only, pre-vaccination screening for 

contra indication) to adopt? 

• How to determine the manpower requirements and personnel assignment? 

The operational (real-time) decisions include: 

• Identifying the type of the bioterror event. 

• Managing the contact tracing process (if applied). 

• Prioritizing efforts with respect to monitoring, isolating, quarantining, tracing, and 

vaccinating. 

• Coordinating the supply chain of vaccines and other supplies. 

• Identifying bottlenecks and potential congestion. 

• Determining capacities and setting service rates. 
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One of the most critical decisions—a decision that has both structural and operational 

implications—is which vaccination policy to adopt. This question has generated debate 

among policymakers [1] and has also drawn much attention by the general public [2], [3]. 

The vaccination policy decision has two levels. At the first level, policymakers must 

choose between essentially two options: a preemptive approach in which the entire 

population is pre-vaccinated, and a “wait and see” approach where post-attack emergency 

response (vaccination, quarantine, isolation) commences following an outbreak of the 

disease. Mixtures of these two options are possible too, i.e., pre-vaccination of first 

responders (e.g., health-care and law-enforcement personnel) only. Sociological and 

psychological considerations (is there a real threat or just a perceived one?) coupled with 

medical considerations (fear of side effects) have hindered policy makers from taking any 

significant preemptive action so far. 

If no significant preemptive measures are taken, the question at the second level is 

which post-event vaccination policy to adopt. The two policies that have been examined 

so far are mass vaccination and trace vaccination. In mass vaccination, maximum 

vaccination capacity is utilized to uniformly inoculate the entire population. In trace (also 

called ring or targeted) vaccination, only limited vaccination capacity is utilized to 

selectively inoculate contacts (or suspected contacts) of infective individuals. 

Several researchers have attempted to address the issue of the post-event vaccination 

process in the case of smallpox, and in particular to compare mass vaccination to trace 

vaccination. Kaplan, Craft, and Wein [4] propose a continuous-time deterministic model 

that comprises 17 ordinary differential equations. Their model, details of which are 

reported in [5], captures many important aspects of the situation, including the “race to 
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trace.” The race to trace reflects the time constraints on the effectiveness of the 

vaccination process due to the limited time period in which an infective is  

vaccine-sensitive or “immunable.” They assume exponential distributions with regard to 

all of the time parameters (e.g., incubation time, infectious time) and therefore the 

transitions in their model are not dependent on the “age” of an individual in a certain 

stage of the epidemic. They also ignore the effect of the epidemic initial conditions. Some 

epidemic and operational parameters may have different values at the early stages of the 

epidemic than later on. For example, the vaccination process may need some setup time 

during which only a portion of the potential vaccination capacity can be utilized. Also, 

during the first generation of the disease (prior to detection) the infection rate may be 

higher and the isolation rate may be lower because of lack of situational awareness. 

Kaplan et al. [4] conclude that under reasonable conditions regarding the initial attack 

size and the epidemic’s spread parameters, mass vaccination is generally more effective 

than trace vaccination. 

Contrary to the analytic macroscopic approach in [4], [5], Halloran, Longini, Azhar, 

and Yang [6] use a detailed simulation to model at the micro level a smallpox 

transmission process in a (socially) structured community of 2,000 people. The disease 

transmission process in their model takes into account the social structure of the 

community, attempting to better represent the way the epidemic spreads in the 

population. They assume that the random variables that are associated with the duration 

of the various stages of the epidemic are uniformly distributed—an assumption that can 

hardly be justified. They assert that according to their simulation, trace vaccination would 

prevent more smallpox cases per dose of vaccine than would mass vaccination. Due to 
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the imbedded nonlinearities in the epidemic process, it is not clear if their conclusions 

derived for a population of 2,000 may also apply to a population of say 10 million. Their 

model also lacks the operational and logistical aspects that are accounted for in [4]. 

However, the Halloran et al. and the Kaplan et al. models are not inconsistent. The model 

in [4] gives similar results as the model in [6] when supplied the inputs used in [6]   

(see [7]). 

A Markov chain model of the epidemic progression is utilized by Meltzer, Damon, 

LeDuc, and Millar [8] to analyze various response options. Their conclusion is that only a 

combination of vaccination with an effective quarantine may eradicate the epidemic. The 

paper contains some epidemic progression data—some of which is used in our paper. 

Koopman [9] reviews the models in [4] and [6] and suggests a possible third modeling 

approach based on a network model that describes the links among individuals. Such 

models are reported in [10] and [11]. Other researchers ([12], [13]) use  

distance-based models to analyze ring vaccination, which is a geographically oriented 

version of trace vaccination. Spatial effects are also examined in [14], where a high-

resolution computational model is developed. In a more recent publication [15], the 

authors develop a stochastic model of outcomes under various control policies. Their 

model is limited in the sense that they assume, rather than derive, the post intervention 

basic reproductive rate. 

There are two main objectives in the current research. The first objective is to develop 

a flexible, large-scale analytic model that expands and generalizes previous models. Our 

model is conceptually similar to the model in [4], but it differs in the use of discrete 

rather than continuous time. Thus, it is in the form of a set of difference equations rather 
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than differential equations. As it will be shown later on, a discrete model can more easily 

capture certain key operational, logistical, and epidemiological aspects of the situation. 

Also, in contrast to the constant hazard functions (exponential distributions) of the time 

parameters in [4] and the uniform distributions of these parameters in [6], our model 

makes no assumptions with regard to these distributions. It can take any finite-support 

distributions—including empirical. The model also explicitly represents the  

age-dependent transitions among the various stages of the epidemic. We also distinguish 

between the initial conditions of the epidemic and its operational and logistical  

steady-state parameters. 

The second objective is to propose an alternative vaccination policy, the prioritized 

vaccination policy (PVP), which may be viewed as a mixture of the mass vaccination 

policy (MVP) and the trace vaccination policy (TVP). We demonstrate that under a set of 

realistic assumptions regarding the epidemic parameters and the operational and logistical 

capabilities to handle it, the PVP is significantly more effective than either the MVP or 

the TVP individually. 

The paper is organized as follows: in Section 2 we discuss the possible response 

options for a bioattack, and in Section 3 we present the model. The three vaccination 

policies—PVP, MVP, and TVP—are analyzed in Section 4. First, we examine the base 

case, which is similar to the scenario described in [4], and then we perform sensitivity 

analysis. Section 5 contains the summary and conclusions. 

2. The Epidemic and the Possible Interventions 

We consider a situation where a malevolent agent engages a population with an act of 

terror by releasing the smallpox virus in a public area. This act of terror is clandestine, 
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and the authorities are not aware of the event until a certain number of symptomatic 

patients are reported and diagnosed as carrying the disease. Once the epidemic is detected 

and identified, a response is initiated, which involves isolation, quarantine, tracing 

contacts and vaccinating some or all of the population. The disease has an incubation 

period before an infected individual becomes symptomatic. During the incubation period 

the infected individuals are not infectious, and therefore the disease is not transmitted to 

others. The incubation period is divided into two periods of time: the immunable (also 

called vaccine sensitive) period and the non-immunable period. During the immunable 

period, vaccination is effective. It will eradicate the disease from an infective at that stage 

with high probability. During the non-immunable period, vaccination is not effective, and 

therefore the infective will eventually become ill. Once the incubation period is over, the 

infected individual becomes infectious. The infectious period lasts as long as the 

symptoms still persist. As in [4], the transmission of the disease is in the form of 

homogeneous mixing. 

At any given time t, the population of non-vaccinated individuals is divided into the 

following six possible stages: 

S: Susceptible to the disease;  

A: Infected, not yet infectious (incubating), and immunable (vaccine sensitive); 

B: Infected, not yet infectious (incubating), and not immunable; 

I: Infected, infectious, and not yet isolated; 

Q: Infected, infectious, and isolated, 

R: Removed, recovered, and immune or dead. 

 



 9  

The durations of the stages A , B , I, and Q are random variables with probability mass 

functions ( ), ( ), ( ), and ( ),A B I QP j P j P j P j  respectively. The parameter j indicates the 

number of days—the time resolution of the model—an individual stays at a certain stage. 

Note that while ( ), ( ), and ( )A B QP j P j P j are determined purely by epidemic 

characteristics, PI(j) is affected also by the response process and in particular, the 

effectiveness of the detection and quarantine efforts. Numerical values of the various 

probability mass functions that are selected for the base case in the analysis are taken 

from [8]. 

Once the epidemic is identified, detected infectious individuals (in stage I) are 

isolated (moved to stage Q) and the vaccination process commences. Two potential 

vaccination queues may be formed: the general queue and the tracing queue. The general 

queue comprises non-vaccinated individuals (in stages S, A , and B) who are not in the 

tracing queue. The tracing queue comprises all non-vaccinated contacts named by an 

index case. An index case is a newly detected infectious individual. Because of the 

additional effort that is required to trace contacts, the service rate at the tracing queue is 

lower than that at the general queue. The tracing service reduction factor is the ratio 

between the service rates at the general queue and tracing queue. We assume that a 

certain portion of the vaccination capacity is allocated to the tracing queue and the rest is 

applied to the general queue. 

The set of contacts that are named by a certain index case is called the index set. Let 

E denote the set of index cases and let Ji denote the index set of i E∈ . The index set Ji 

may comprise three possible disjoint subsets: 
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Ji(1) – Individuals that have already been vaccinated; 

Ji(2) – Non-infected (susceptible) individuals not yet vaccinated; 

Ji(3) – Infected individuals not yet vaccinated 

For a given index i the target population of the tracing process is Ji(3), in particular 

those who were not previously named by another index case. Tracing individuals in Ji(2) 

is somewhat wasteful since there is no race to trace. The susceptible individuals in Ji(2) 

can be vaccinated in the more efficient general (mass) queue. Tracing individuals in Ji(1) 

is clearly a waste of tracing capacity. Thus,  

(1) (2) (3)i i i iJ J J J= ∪ ∪           (1) 

and the tracing queue is generated by i
i E

J
∈
∪ . 

To properly represent the effective vaccination rate at the tracing queue we need to 

introduce three terms: (index case) i-infective, newly named i-infective, and potentially 

traceable. An i-infective is an individual that has been infected by index case i. For each 

infective the transmitter is uniquely defined. That is, an infective cannot be infected 

twice. Notice that an i-infective may be named by another non-transmitter index case j 

before being named by its transmitter i. An i-infective, not previously named by another 

index case, nor vaccinated, which is named by index case i is called newly-named  

i-infective. An i-infective, not yet traced or vaccinated, is said to be potentially traceable 

(PT) if its corresponding transmitter i has been detected and interviewed. Let Pi denote 

the set of PT i-infectives. Clearly, the sets Pi, i E∈  are disjoint. A newly named  

i-infective is PT, but a PT i-infective may not be newly named if the corresponding index 

case failed to name this contact. The state PT is transient, that is, an i-infective is PT only 

during the time period when i is interviewed. An i-infective that has not been named by 
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its corresponding index i becomes non-PT once again in the next period. Thus, an  

i-infective may pass through three possible states: pre-PT, PT, and post-PT. By 

definition, an individual in the post-PT state will never become PT again. He may be 

traced however by a non-transmitter index case. Also, an i-infective in the pre-PT state 

may never become PT if named by a non-transmitter. As in [4], we assume that the 

cardinality of Ji is constant and equal to M for all index case i. Also, since we assume 

homogeneous mixing, that is, all index cases are identical with respect to the transmission 

process, the cardinality of Pi is also constant and is equal to N for all index cases i E∈ . 

However, unlike M that stays constant throughout the epidemic  

(e.g., M = 50 in [4]), N changes over time as the epidemic progresses and therefore it is 

denoted by N(t). As in [4], we assume that M = N(t) for all t, that is, the size of the index 

set always exceeds the number of PT infectives. Finally, let ? 0 denote the probability that 

a PT infective is (newly) named by the corresponding index. 

Note that the total number of PT infectives at time t is Q1(t)N(t), where Q1(t) is the 

number of index cases that are detected and interviewed at time t. Similarly, Q1(t)M is the 

total number of names generated at time t by the index cases. We assume that M 

represents the net number of newly named contacts. Therefore, the index sets are disjoint. 

Let ( )tω  denote the fraction of the index set that contains newly named infectives. 

0

( )
( ) .

N t
t

M
ω ω=             (2) 

Since there are no reliable estimates for 0ω , we will first assign, in the base case, a 

reasonable value for this parameter, and then we will perform a full-scale sensitivity 

analysis in Section 4. 
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The definitions in (2) are used as a backdrop for the more generalized definitions in 

Section 3. 

Note that MVP and TVP generate only one queue each—general queue in MVP and 

tracing queue in TVP. The vaccination process that is proposed in this paper—PVP, 

which is described in the next section—generates both queues. 

Figure 2.1 depicts the epidemic stages and the transitions among them. The subscripts 

indicate the age of an individual in a certain period of the epidemic (incubating, 

infectious or isolated). The terms 0, ,j j jA A A− + denote cohorts of immunable individuals at 

age j of the incubating period in the pre-PT, PT, and post-PT stages, respectively. Similar 

classification of pre-PT, PT and post PT applies also to the non-immunable stage B , but 

for the sake of clarity, we represent this stage in Figure 2.1 by a single aggregate node Bj. 

Notice that in the absence of a corresponding index case, an individual may move from 

stage A− to stage B without being potentially traceable at all (see e.g., edge 1 2A B− → ). 

One of the main objectives is to trace, as fast as possible and as many as possible, 

individuals in stage 0A  (see the shaded oval shape in Figure 2.1). These individuals can 

be potentially traced and successfully vaccinated. 
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Figure 2.1: The epidemic stages 
 

 

3. The Model 

3.1 Notation 

The various cohorts in the epidemic are: 

0 0

( ) Number of susceptibles at time ;
( ) Number of  infectives in the -th day of the incubation period,

            ( ) ( ) ( ) ( ),where ()are pre- , ( )are  and (
j

j j j j j j j

S t t
A t immunable j

A t A t A t A t A t PT A t PT A t− + − +

−
−

= + +

0 0

) are post- ;

( ) Number of -  infectives in the -th day of the incubation period,

( ) ( ) ( ) ( ),where ()are pre- , ()are  and ( ) are post- ;

( ) Number of in

j

j j j j j j j

j

PT

B t non immunable j

B t B t B t B t B t PT B t PT B t PT

I t

− + − +

−

= + +

− fectious individuals in the -th day of the infectious period;

( ) Number of isolated individuals in the -th day of isolation.j

j

Q t j−
 
Let, 
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+
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0 0

1 1 1

0 0

1 1 1

1

( ) ( ) , ( ) ( ), ( ) ( ),

( ) ( ), ( ) ( ) , ( ) ( ) ,

( ) ( ).

j j j
j j j

j j j
j j j

j
j

A t A t A t A t A t A t

B t B t B t B t B t B t

I t I t

∞ ∞ ∞
− − + +

= = =

∞ ∞ ∞
− − + +

= = =

∞

=

= = =

= = =

=

∑ ∑ ∑

∑ ∑ ∑

∑

        (3) 

Other parameters are: 

( )tα  – Infection rate; 

T(t) – The length of the tracing queue; 

L(t) – Total number of newly named infectives in the tracing queue; 

( )Tr t  – Tracing rate; 

V(t) – Nominal vaccination/tracing capacity; 

q – Proportion of the vaccination capacity allocated to the tracing queue; 

( )Gr t  – The effective vaccination rate in the general queue; 

r+(t) – The effective residual trace vaccination rate that is applied to individuals who 

are not newly named PT infectives (Recall that a newly-named PT infective is an 

infected individual that is named, for the first time, by the corresponding 

transmitter); 

( )tω  – Estimated fraction of the tracing queue that contains newly named infectives;  

0ω  – The probability of naming a PT infective; 

w(t) – The rate at which non-PT infectives become PT; 

M – Size (cardinality) of the index set (average number of traced individuals per 

index case); 

c – Tracing service reduction factor; 
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e – Vaccination efficacy (% of vaccinations that result in a “take”). To simplify the 

exposition we assume initially that e = 1. This assumption is relaxed in the 

analysis, where the various vaccination rates are multiplied by the efficacy 

parameter. 

D – Epidemic detection threshold. 

3.2 Definitions and Derivations of Transitions 

The infection rate is given by 

0( ) ,
(0) ( )

R
t

S E I
α α= =              (4) 

where R0 is the average number of infections generated by an infectious individual early 

in the epidemic (also called basic reproductive ratio [16]), E(I) is the mean duration of 

the infectious stage, and S(0) is the size of the population at the beginning of the 

epidemic. 

The tracing rate is 

{ ( ) , ( )}
     if  ( ) 0

( )( ) .
0                          Otherwise

T

Min qV t cT t
T t

cT tr t
 >= 


          (5) 

The tracing rate is affected by the tracing capacity which is a fraction q of the overall 

available vaccination capacity V(t). 

The tracing queue is given by the following recursive equation: 

1( ) ( 1)(1 ( 1)) ( ),TT t T t r t MQ t= − − − +             (6) 

where Q1(t) is the number of new index cases at time t. 

The number of newly named infectives in the tracing queue is given recursively by 
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0 0
0( ) ( 1)(1 ( 1)) ( ( ) ( )),TL t L t r t A t B tω= − − − + +            (7) 

The sum 0 0( ) ( )A t B t+  is the total number of PT infectives at time t. 

The vaccination rate in the general queue is, 

0 0
0

( ) ( ) ( )
( ) 1, .

( ) ( ) ( ) ( ) ( ) (1 )( ( ) ( ))
T

G

V t cT t r t
r t Min

S t A t A t B t B t A t B tω− + − +

 −
=  

+ + + + + − + 
        (8) 

Note that the general queue may include individuals that are susceptible, non-PT 

(both immunable and non-immunable), and PT not newly named. 

Let, 

( )
( ) .

( )
L t

t
T t

ω =               (9) 

( )tω is the estimated fraction of the tracing capacity that is applied to newly named 

PT infectives. It can be seen that (9) is a natural generalization of (2) for the tracing 

queue. The remaining portion 1- ( )tω of the tracing capacity generates the residual trace 

vaccination rate, which is applied proportionally to individuals that are not newly named 

infectives. Thus, 

0 0
0

(1 ( )) ( ) ( )
( ) .

( ) ( ) ( ) ( ) ( ) (1 )( ( ) ( ))
Tt T t r t

r t
S t A t A t B t B t A t B t

ω
ω

+
− + − +

−
=

+ + + + + − +
              (10) 

The vaccination rates are non-zero only after the epidemic is detected. Detection 

occurs only after D symptomatic individuals report to emergency rooms. D is the 

epidemic detection threshold, which indicates the alertness and responsiveness of the 

medical and public health system. 

The hazard functions of the various stages are: 
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1

0

( )
( )

1 ( )

X
X j

X
k

P j
j

P k
ϕ −

=

=
− ∑

,       X=A, B , I, Q.                    (11) 

The rate at which pre-PT infectives become PT depends on the rate at which 

infectious individual become index cases. 

Let 

0

( )
,  1,2,....

1 ( )

l I
j j

I
k

P j l
l

P k
β

=

+
= =

− ∑
                      (12) 

l
jβ  is the probability that an infectious individual, who is currently at the j-th day of 

his/her infectious period (I), will be detected and isolated l days from now. Notice that if l 

= 1, then 1 ( )j B jβ ϕ= . 

Based on our assumption of homogeneous free mixing, the probability u l(t) that an 

individual who got infected on day t will become PT on day t+l is, 

1

1

( )
( ) .

( )

l
k k

k
l

k
k

I t
u t

I t

β
∞

=
∞

=

=
∑

∑
                       (13) 

Thus, the probability wj(t) that a pre-PT infective who is at the j-th day of the 

incubation period at day t, will become PT at t+1 is, 

1

1

( )
( ) .

1 ( )

j
j j

l
l

u t j
w t

u t j

+

=

−
=

− −∑
                      (14) 

3.3 The Difference Equations 

The following set of difference equations describes the epidemic progression in case 

of intervention: 
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( 1) ( )[1 ( ) ( )][1 ( ) ( )]GS t S t t I t r t r tα ++ = − − −                       (15) 

1 1( 1) [ ( ) ( ) ( )][1 ( ) ( )](1 (t))GA t t S t I t r t r t uα− ++ = − − −                      (16) 

0
1 1( 1) [ ( ) ( ) ( )][1 ( ) ( )] (t)GA t t S t I t r t r t uα ++ = − −                      (17) 

1( 1) ( )[1 ( ) ()](1 ( ))(1 (t))j j G A jA t A t r t r t j wϕ− − +
+ + = − − − −                     (18) 

0
1( 1) ()[1 ( ) ()](1 ( )) (t)j j G A jA t A t r t r t j wϕ− +

+ + = − − −                      (19) 

1

0
0 0

( 1) ( ( )(1 ( ) ( ))

()(1 ( ) (1 )( ( ) ( ))))(1 ( ))
j j G

j T G A

A t A t r t r t

A t r t r t r t jω ω ϕ

+ + +
+

+

+ = − +

+ − − − + −
                              (20) 

1( 1) ( ( )(1 ( )) ( ) ( ))(1 ( ) ( ))(1 (t))j j B j A G jB t B t j A t j r t r t wϕ ϕ− − − +
+ + = − + − − −                   (21) 

0
1( 1) ( ( )(1 ( )) ( ) ( ))(1 ( ) ( )) (t)j j B j A G jB t B t j A t j r t r t wϕ ϕ− − +

+ + = − + − −                    (22) 

1

0 0
0 0

( 1) ( ( )(1 ( )) ( ) ( ))(1 ( ) ( ) )

( ( )(1 ( )) ( ) ( ))(1 ( ) (1 )( ( ) ( )))
j j B j A G

j B j A T G

B t B t j A t j r t r t

B t j A t j r t r t r t

ϕ ϕ

ϕ ϕ ω ω

+ + + +
+

+

+ = − + − − +

+ − + − − − +
                  (23) 

*
1

0 *
0 0

( 1) (( ( ) ())(1 ( ) ( ))

()(1 ( ) (1 )( ( ) ( )))) ( ) ( )(1 ( ))
j j j G

j T G A j B

B t A t A t r t r t

A t r t r t r t j B t jω ω ϕ ϕ

− + +
+

+

+ = + − − +

+ − − − + + −
                  (24) 

*
1

1

( 1) ( ) ( )j B
j

I t B t jϕ
∞

=

+ = ∑                         (25) 

1( 1) ( )(1 ( ))j j II t I t jϕ+ + = −                         (26) 

1
1

( 1) ( ) ( )j I
j

Q t I t jϕ
∞

=

+ = ∑                         (27) 

1( 1) ( )(1 ( ))j j QQ t Q t jϕ+ + = −                         (28) 

Explanation of the Equations 

First we observe that the vaccination rates are as follows: a fraction 0ω of the PT 

infectives—the newly named infectives—are vaccinated at a rate rt(t), while the rest of 
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the population is vaccinated at a rate rG(t) + r+(t). Recall that the parameter ( )r t+  is the 

residual portion 1- ( )tω  of the trace vaccination capacity that is applied to (“wasted” on) 

individuals that are not newly named PT infectives. 

Equation (15): The remaining susceptibles are those who have not been vaccinated nor 

infected. 

Equations (16), (17): The newly infected are among those who have not been vaccinated 

neither in the general queue nor by the residual tracing capacity. The parameter u1(t) is 

the probability that a newly infected becomes immediately PT. 

Equation (18): The immunable pre-PT infectives are those who have not been 

vaccinated (neither in the general queue nor by the residual tracing capacity), are still 

immunable (1 ( )A jϕ− ) and have not become PT (1-wj(t)). 

Equation (19): The immunable PT infectives at time t+1 comprise immunable pre-PT 

infectives ( ( )jA t− ) who have not been vaccinated, are still immunable (1 ( )A jϕ− ), and 

have become PT (wj(t)). 

Equation (20): The immunable post-PT infectives at time t+1 comprise previously 

immunable PT ( 0 ( )jA t ) and post-PT ( ( )jA t+ ) infectives that have not been vaccinated and 

remain immunable (1 ( )A jϕ− ). The vaccination rate of the PT individuals is a convex 

combination of the (net) tracing rate and the combined vaccination rate of the general 

queue and the residual tracing capacity. 

Equations (21)-(23): These equations are similar to (18) -(20). They represent the 

transition from an immunable stage to a non-immunable stage. 
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Equations (24): This equation records the total number of the non-immunable infectives. 

We need the two representations of stage B cohort ((21)-(23) and (24)) because of the 

fact that vaccinating individuals at that stage is ineffective; they will eventually become 

sick. Thus, (21)-(23) are needed for determining the vaccination queue sizes for pre-PT, 

PT, and post-PT infectives, while (24) counts the individuals who will eventually become 

infectious (see Equation (25)). 

Equation (25): The newly infectious individuals comprise infectives whose incubation 

period has ended. 

Equation (26): The remaining infectious individuals at stage I are those who have not 

been detected and isolated yet. 

Equation (27): The newly isolated infectious individuals (new index cases) are those 

who have been detected. 

Equation (28): The remaining individuals in isolation are those who have not been 

removed yet (recovery or death). 

The model that has been described above is general and can represent several 

vaccination policies. Specifically, once the vaccination process has been initiated, the 

MVP implies that 0( ) ( ) 0 for all , and ( ) 0T Gr t r t t r tω+= = = >  for all t, such that S(t) > 0. 

In TVP, ( ) 0 for all , and ( ) , ( ) 0G Tr t t r t r t+= > for all t, such that T(t) > 0. 

The PVP policy is a combination of mass vaccination and trace vaccination where at 

all times treating the tracing queue preempts the general queue. Whenever there are new 

index cases, an appropriate vaccination capacity is allocated for tracing and vaccinating 

the generated named contacts (Index Set). The tracing/vaccination capacity allocated to 

the tracing queue is limited only by the total existing vaccination capacity, that is, q = 1. 



 21  

Mass vaccination is carried on with the remaining vaccination capacity. The parameter c, 

the tracing service reduction factor, quantifies the inefficiencies that result from the 

tracing process. 

4. Analysis 

The model developed in Section 3 is applied now to evaluate the effectiveness of the 

prioritized vaccination process (PVP) in comparison with the  mass vaccination process 

(MVP) and the trace vaccination process (TVP). Recall that in PVP the first priority is for 

the tracing queue, and the remaining vaccination capacity is applied to the general queue. 

An individual is treated in the general queue only if he is not claimed by the tracing 

queue. 

4.1 Base Case 

Whenever it is relevant, the parameters chosen for the base case are similar to those in 

[4]. We also assume for this case that the values of the parameters remain constant 

throughout the duration of the epidemic. In particular, there are no special initial 

conditions. The values of the various epidemic, population, and operational parameters 

are shown in Table 4.1. Table 4.2 presents the characteristics of the probability mass 

functions of the time parameters. These probability distributions are consistent with the 

assumptions in [4] and the data in [8]. 
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Value  Definition Symbol 
500,000* Daily vaccination capacity V(t) 

10-7 Infection rate α(t) 
1,000 Number of initially infected 

1 (0)A−  
107 Size of population S(0) 
4 Tracing service reduction factor c 
50 Size of the index set M 
0.7 Probability of naming a PT infective ? 0 

20 Epidemic detection threshold D 
0.975 Vaccination efficacy E 

* In [4] the vaccination capacity is assumed to be 106. We believe that 500,000 is a more realistic estimate, 

at least for Israel. 

Table 4.1: The Base Case Parameters 

Time Period P0.05 P0.95 Mean Median 
Incubation (A) 1 5 3 3 
Incubation (B)* 8 14 11.5 11.5 

Infectious (I) 1 5 3 3 
Isolation (Q) 9 15 12 12 

* Time is measured from the day of infection. 

Table 4.2: The Base Case Probability Distributions. 

The probability distributions in Table 4.2 are also consistent with the limited data 

regarding the probable durations of the various stages that are reported mainly in [17] and 

[18]. 

The results corresponding to the base case are summarized in Table 4.3: 

Vaccination 
Policy 

Number 
Infected*  

Duration of 
Epidemic 

Maximum Daily 
Isolation Capacity 

Needed 
PVP 1,015 57 days 1,002 beds 
MVP 2,232 58 days 1,765 beds 
TVP > 108,000 > 1 year 9,380 beds 

* Excluding the initially infected (1,000). 

Table 4.3: Results for the Base Case. 

If we take the exact same parameters as in [4], that is, V(t) = 106 and ? 0 = 0.5, then 

the numbers of infected are 560 and 818 for PVP and MVP, respectively. 
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Figures 4.1a and 4.1b depict the progression of the epidemic under each one of the 

three vaccination policies. The graphs in Figure 4.1a indicate the number of newly 

infected. Figure 4.1b presents the number of deaths over time, assuming death rate of 

30% [4], and taking into account the PDF of the duration of the symptomatic period 

(stages I and Q). 
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Note: Including the initially infected, which are depicted in the graph of days 6-16. 

Figure 4.1a: The epidemic progression – number of newly infected . 
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Figure 4.1b: The epidemic progression – number of deaths. 

 

 

Figures 4.1a and b demonstrate the differences among the three vaccination policies: 

MVP results in a relatively large number of second-wave infected individuals, but the 

epidemic is eradicated much faster than when TVP is executed. In TVP, the epidemic has 

initially smaller peaks than in MVP, but it is expanding gradually over a longer period of 

time (in the base case, the epidemic reaches its peak on day 159). In PVP, the epidemic 

has smaller peaks than in TVP and its duration is about the same as in MVP. 

Discussion 

The PVP is clearly more effective than the two other vaccination policies in the base 

case. It results in over 50% less derived infections (second wave and later infections that 

result from the initial attack of 1,000 infected)  compared to MVP, and over 99% less 

derived infections compared to TVP. In both PVP and MVP, the epidemic is eradicated 
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(and the entire population is inoculated) after almost two months. In the TVP case, the 

epidemic lasts a little over one year. The peak isolation/quarantine capacity needed for 

the PVP is less than 60% the peak capacity needed for MVP. The extra capacity needed 

in the MVP case is required relatively early in the epidemic since the first waves of 

infection may not be captured by the untargeted homogeneous vaccination process. In 

TVP and PVP, the vaccination is targeted at high-risk susceptibles, and therefore more 

stage-A individuals may be located and vaccinated at the early stages of the epidemic. 

However, the lack of massive vaccination in TVP results in prolonging and expanding the 

epidemic and thus increasing the total number infected. The peak isolation capacity in the 

TVP case (9,380) is needed on days 165 and 166 of the epidemic. These results are 

consistent with the conclusions in Kaplan et al. that MVP is significantly more effective 

than TVP. 

Note that the relative high effectiveness of PVP is due to the synergy that is created 

by combining mass and trace vaccination. Mass vaccination builds up herd immunity that 

effectively reduces the value of R0, thus amplifying the effect of the tracing part of the 

process (See Figure 3 in [4]). Also note that in the absence of effective disease detection 

systems that can indicate the occurrence of a bio-attack event, the infected individuals in 

the first wave of infection—those who were infected by the initial bio-attack—cannot be 

helped. That is why the three graphs in Figure 4.1 coincide during days 1-16. 

Implementing PVP will require a flexible response system in which resources are 

distributed smoothly and effectively between the mass and trace vaccination queues. 

Enabling this flexibility may require structural and operational considerations when 
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setting up the vaccination system. Specifically, deploying share resources such as 

medical personnel, must be planned carefully to obtain maximum utilization. 

4.2 Sensitivity Analyses 

Is the evident dominance of PVP over MVP and TVP robust? Does it dominate for 

other sets of parameters? 

To address these questions we perform sensitivity analysis with respect to some key 

parameters. Since in most cases TVP turns out to be inferior to PVP and MVP by almost 

two orders of magnitude, the comparisons in the following will focus at MVP and PVP 

only. The number of infectives shown in the analysis excludes those who were initially 

infected by the bioattack ( 1 (0)A− ). 

Tracing Service Reduction Factor – c 

In the base case, we assumed that the tracing process consumes four times the 

vaccination resources needed for mass vaccination, that is, c = 4. This value is adopted 

from [4]. Arguably, the larger the value of c, the lower the relative efficiency of the 

tracing process, and thus the less likely it is that PVP will outperform MVP. Figure 4.2 

presents the effect of increasing c in increments of 10 on the effectiveness of PVP. 

Obviously, the varying of c does not affect the MVP, since there is no tracing activity. 

For PVP, the number of infected increases from 990 (c = 1). The break-even value of the 

tracing service Reduction Factor for PVP compared to MVP is c = 65. In other words, the 

tracing service rate must be more than 65 times slower than the general vaccination rate 

to render MVP more effective. 
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Figure 4.2: Number of infected as a function of the tracing service reduction factor. 

Size of the Index Set – M 

Similarly to the tracing service reduction factor c, the average number of cases that 

are traced per index case M does not affect MVP. However, increasing M, without 

increasing the value of ? 0 at the same time, will clearly have a negative effect on PVP 

(and TVP) because of the inefficiencies that result from the tracing service reduction 

factor. Figure 4.3 presents the effect of varying M between 50 (the base case) and 500 on 

the performance of PVP. Notice that the effect is relatively small in this range. Increasing 

M by an order of magnitude results in less than 35% more infectives. 
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Figure 4.3: Number of infected in PVP as a function of the size of the index set. 
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Epidemic Detection Threshold – D 

One would expect that the effectiveness of the response process will depend on the 

situational awareness of the healthcare system. The faster the outbreak of the epidemic is 

detected, the earlier response actions can be taken, and therefore fewer infected cases 

would be expected. Figure 4.4 shows the effect of the epidemic detection threshold on 

PVP and MVP. The effect of varying the detection threshold in the PVP case is similar to 

the effect in the MVP case: Moving from D = 100 to a fully alert system (D = 1) results in 

33% less infectives in both cases. 
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Figure 4.4: Number of infected as a function of the detection threshold . 
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Daily Nominal Vaccination Capacity – V 

The results are sensitive to the assumption regarding the effective daily vaccination 

capacity, which is assumed here to be fixed over time. Figure 4.5 presents the effect of 

varying the values of V. 
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Figure 4.5: Number of infected as a function of the vaccination capacity. 

Clearly, the effectiveness of MVP is more sensitive to the value of V than PVP. The 

advantage of PVP over MVP is most notable for small values of V. When the vaccination 

capacity is only 100,000 a day (not shown in the graph), the number of infected in the 

MVP case is more than 14 times higher than that number in the PVP case. This advantage 

declines as V increases since the relative impact of the tracing process gets smaller. If  

V = 1M, then PVP results in 45% fewer casualties compared to MVP. 

Tracing Effectiveness – ω0 

This parameter reflects the efficiency of the tracing process. It is the maximum 

possible probability to trace an infective. In the base case, we assumed that this efficiency 

cannot exceed 70%. Clearly, the lower the upper bound, the less advantageous are PVP 

and TVP compared to MVP. Figure 4.6 shows the effect of ω0
 on the number of 
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infectives. TVP is more effective than MVP if ω0 = 0.99, that is, only in the case of 

extremely high tracing effectiveness. For ω0 = 0.1, PVP is the most effective policy. Its 

advantage over MVP increases, as ω0 gets larger. If ω0 = 0.5, then PVP results in 39% 

fewer infectives compared to MVP. If ω0 = 0.9, then the number of infectives is 70% 

lower. 
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Figure 4.6: Number of infected as a function of ω0. 
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Effect of Initial Conditions 

During the initial stages of the epidemic some of the parameters may have different 

values than later on in the epidemic. We consider here three such parameters: the daily 

vaccination capacity V , the infection rate α, and the distribution function of the duration 

of the infectious period PI(j). Due to set-up time, we assume that during the first day of 

vaccination V(1) = 200,000 only, compared to V(t) = 500,000 t > 1. In the base case,  

α =10-7, which implies that R0 = 3. During the first wave of infection, when the epidemic 

has not been detected yet, one may expect a higher infection rate. Thus, we assume that 

during the first wave R0 = 4. The lack of situational awareness leads also to an extended 

stage I period during the first wave. Therefore, we assume that the mean time of stage I 

during the first wave is E(I) = 4 days, compared to three days during the rest of the 

epidemic period. Table 4.4 presents the effect of these initial conditions on the number of 

infected—in comparison to the base case. 

Scenario PVP MVP 
Base Case 1,015 2,232 

Initial Conditions 2,131 4,218 
Base Case & E(I) = 4 1,814 3,548 
Base Case & R0 = 4 1,052 2,415 

Base Case & V(1) = 200K 1,083 3,415 
 

Table 4.4: The Effect of Initial Conditions. 

The effect of the initial conditions is not negligible. They result in almost 90% more 

casualties in MVP and twice that number in PVP. It is also observed that the length of the 

infectious period (Stage I) distribution function has the largest single impact among the 

three factors that affect the initial conditions. It follows that early pre-symptomatic 

detection of the epidemic is crucial in any vaccination policy. 
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5. Summary and Conclusions  

We have developed a new deterministic (expected-value) difference-equations model 

that captures key epidemiological and operational features of a bioattack. The model 

represents several inter-temporal parameters and processes—in particular, the process in 

which infected individuals become potentially traceable. The model has been 

implemented to analyze three vaccination policies: the mass vaccination process (MVP), 

the trace vaccination process (TVP), and the newly suggested prioritized vaccination 

process (PVP), in which high-priority tracing is conducted in conjunction with a 

complement mass vaccination effort. 

The model has limited capabilities as a statistical projection tool because of its lack of 

complete stochasticity. However, this may not be a real shortcoming in the smallpox case 

because limited availability of relevant and reliable epidemiological and operational data 

overshadows the deficiency in the probabilistic accuracy of the model. The model is 

intended and is useful to determine the relative effectiveness of the three aforementioned 

vaccination policies, and to give a rough estimate of the expected casualties in each case. 

The discrete structure of the model provides more flexibility and facilitates deeper 

analysis than a comparable continuous model. For example, the conditional transition 

probabilities among the epidemic stages in our model cannot be captured as easily in a 

continuous model.    

The first conclusion of the analysis is a confirmation of the general result in [4] and 

[5]; that is, mass vaccination is far more effective than trace vaccination. The second 

conclusion is that the prioritized vaccination policy is superior to the mass vaccination 

policy for any set of realistic parameters. Moreover, since the PVP “wastes” vaccination 
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resources on tracing, one may argue that the tradeoff between MVP and PVP may be 

sensitive to the assumption regarding the service tracing service reduction factor (c) that 

reflects the degradation in the vaccination rate due to tracing. It is shown that this is not 

the case; PVP is more effective than MVP even if this ratio is higher than 60. It is also 

noted that the advantage of PVP over MVP increases as the vaccination resources become 

more limited (see Figure 4.5). The effectiveness of the PVP is also relatively insensitive 

to the size of the index set M. Tracing as low as five individuals per index case may be 

sufficient for obtaining satisfactory results. Finally, it is noted that initial awareness to 

such an attack, which may reduce the length of the first generation infectious stage (I), 

can have a significant effect on the total number of infected individuals. From the 

logistical point of view, the maximum daily isolation capacity that is needed for MVP is 

considerably higher than the capacity needed for PVP. 

Recall that the model presented here assumes homogeneous mixing. This assumption 

may not be realistic in many possible scenarios. An interesting question is if the 

preference of PVP over MVP is sensitive to that assumption. As a first cut at analyzing 

this issue, we decrease the basic reproductive ratio R0, which is equal 3 at the base case. 

Table 5.1 shows that the effect is marginal.  

  R0 Effectiveness Ratio* 

3 2.20 

2 2.16 

1 2.12 

0.5 2.10 
* Effectiveness Ratio = Number of MVP infected / Number of PVP infected  

Table 5.1: Effectiveness Ratio. 
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Future work in response-policy analysis must take into account spatial and social 

effects. The newly emerging concept of “small world” network [19] may be utilized to 

model these effects. 



 35  

Acknowledgement: I would like to thank Professors Ed Kaplan, Rick Rosenthal, and 

Al Washburn, and two anonymous reviewers for their valuable comments and 

suggestions. 



 36  

REFERENCES 

[1] M. Huerta, R.D. Balicer, and A. Leventhal, SWOT analysis: strengths, weaknesses, 

opportunities and threats of the Israeli smallpox revaccination program, Israel Medical 

Association Journal, 5 (2003) , 42-46. 

[2] W.J. Broad, Study uses math model to determine effects of a smallpox attack,  

New York Times, July 8, 2002. 

[3] B. Healy, Time for pause, US News & World Report, April 21, 2003. 

[4] E.H. Kaplan, D.L. Craft, and L.M. Wein, Emergency response to a smallpox attack: 

the case for mass vaccination, Proceedings of the National Academy of Science, 99 (16) 

(2002), 10935-10940. 

[5] E.H. Kaplan, D.L. Craft, and L.M. Wein, Analyzing bioterror response logistics: the 

case of smallpox, Mathematical Biosciences, 183 (2003), 33-72. 

[6] M.E. Halloran, I.M. Longini, Jr., N. Azhar, and Y. Yang, Containing bioterrorist 

smallpox, Science, 298 (2002) , 1428-1432. 

[7] E.H. Kaplan, L.M. Wein, M.E. Halloran, I.M. Longini, Smallpox bioterror response, 

Letter to the Editor, Science, 300 (2003), 1503-1504. 

[8] M.I. Meltzer, I. Damon, J.W. LeDuc, and J.D. Millar, Modeling potential responses to 

smallpox as a bioterrorist weapon, Emerging Infectious Diseases, 7 (6) (2001), 959-969. 

[9] J. Koopman, Controlling smallpox, Science 298 (2002) , 1342-1344. 

[10] J. Müller, M. Kretzschmar, and K. Dietz, Contact tracing in stochastic and 

deterministic epidemic model, Mathematical Biosciences, 164 (2000) , 39-64. 

[11] M.E.J. Newman, Spread of epidemic disease on networks, Physical Review, E 66 

(2002), 0161281-01612811. 



 37  

[12] J. Müller, B. Schönfisch, and M. Kirkilionis, Ring vaccination, J. Mathematical 

Biology, 41 (2000) , 143-171. 

[13] C.J. Rhodes, R.M. Anderson, Epidemic threshold and vaccination in a lattice model 

of disease spread, Theoretical Population Biology, 52 (1997), 101-118. 

[14] J.M. Epstein, D.A.T. Cummings, S. Chakravarty, R.M. Singa, and D.S. Burke, 

Toward a containment strategy for smallpox bioterror: an individual-based computational 

approach, Brookings Institution – Johns Hopkins University Center on Social and 

Economic Dynamics, Working Paper No. 31 (2002). 

[15] S.A. Bozzette, R. Boer, V. Bhatnagar, J.L. Brower, E.B. Keeler, S.C. Morton, and 

M.A. Stoto, A model for  a smallpox-vaccination policy, The New England Journal of 

Medicine , 348 (5) (2003), 416-425. 

[16] R. M., Anderson and R. M. May, Infectious Diseases of Humans, Oxford University 

Press, (1991).  

[17] F. Fenner, D.A. Henderson, I. Arita, Z. Jexek, and I.D. Lanyi, Smallpox and its 

eradication, World Health Organization (WHO), Geneva, (1988). 

[18] S. Singh, Some aspects of the epidemiology of smallpox in Nepal, World Health 

Organization (WHO), SE/69.10, Geneva (1969). 

[19] D.J. Watts, and S.H. Strogatz, Collective dynamics of ‘small world’ networks, 

Nature, 393 (4) (June 1998) , 440-442. 


